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Abstract

Based on the work of Zheng on the artificial boundary condition for the Schrödinger equation with sinusoidal poten-
tials at infinity, an analytical impedance expression is presented for general second-order ODE problems with periodic
coefficients and its validity is shown to be strongly supported by numerical evidences. This new expression for the kernel
of the Dirichlet-to-Neumann mapping of the artificial boundary conditions is then used for computing the bound states of
the Schrödinger operator with periodic potentials at infinity. Other potential applications are associated with the exact arti-
ficial boundary conditions for some time-dependent problems with periodic structures. As an example, a two-dimensional
hyperbolic equation modeling the TM polarization of the electromagnetic field with a periodic dielectric permittivity is
considered.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Periodic structure problems largely exist in the science and engineering and often they are modeled by par-
tial differential equations with periodic coefficients and/or periodic geometries. In order to numerically solve
these equations efficiently one usually confines the spatial domain to a bounded computational domain (in a
neighborhood of the region of physical interest). The usual strategy is to introduce so-called artificial bound-

aries and impose adequate boundary conditions. For wave-like equations, the ideal boundary conditions
should not only lead to well-posed problems, but also mimic the perfect absorption of waves traveling out
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of the computational domain through the artificial boundaries. Right in this context, these boundary condi-
tions are usually called artificial (or transparent, non-reflecting in the same spirit) in the literature. The inter-
ested reader is referred to a couple of review papers [2,11,12,24] on this research topic.

Artificial boundary conditions (ABCs) for the Schrödinger equation and related problems has been a hot
research topic for many years [2]. Since the first exact ABC for the Schrödinger equation was derived by Pap-
adakis [16] 25 years ago, many developments have been made on the designing and implementing of various
ABCs, also for multi-dimensional and nonlinear problems. However, the question of exact ABCs for periodic
structures still remained open, and it is a very up-to-date research topic, cf. the current papers [8–10,13,21–
23,26,27]. These kind of new ABCs can be applied in many physical problems, e.g. in optical applications from
micro and nano-technology [15,20] and semiconductor superlattices. We refer to the book from Bastard [4] or
the review by Wacker [25] for more details on superlattice transport modelling.

Very recently, Zheng [29] derived exact ABCs for the Schrödinger equation of the form
iut þ uxx ¼V ðxÞu; x 2 R; ð1aÞ
uðx; 0Þ ¼u0ðxÞ; x 2 R; ð1bÞ
uðx; tÞ !0; x! �1: ð1cÞ
The initial function u0 2 L2ðRÞ is assumed to be compactly supported in an interval ½xL; xR�, with xL < xR, and
the real potential function V 2 L1ðRÞ is supposed to be sinusoidal on ð�1; xL� and ½xR;þ1Þ. It is well-known
that the system (1a) has a unique solution u 2 CðRþ; L2ðRÞÞ (cf. [17,18], e.g.):

Theorem 1. Let u0 2 L2ðRÞ and V 2 L1ðRÞ. Then the system (1a) has a unique solution u 2 CðRþ; L2ðRÞÞ.
Moreover, the ‘‘energy” is preserved, i.e.
kuð�; tÞkL2ðRÞ ¼ ku0kL2ðRÞ; 8t P 0:
More precisely, Zheng [29] assumed
V ðxÞ ¼V L þ 2qL cos
2pðxL � xÞ

SL

; 8x 2 ð�1; xL�;

V ðxÞ ¼V R þ 2qR cos
2pðx� xRÞ

SR

; 8x 2 ½xR;þ1Þ;
where SL and SR are the periods, V L and V R are the average potentials, and the nonnegative numbers qL and
qR relate to the amplitudes of sinusoidal part of the potential function V on ð�1; xL� and ½xR;þ1Þ, respec-
tively. Let us note that Galicher [10] also considered the same problem but with a general periodic potential.
Formally he set up at each artificial boundary point an exact Dirichlet-to-Dirichlet mapping, which is nonlocal
in both time and space.

The organization of the paper is as follows. In Section 2, we conjecture an elegant analytical expression of
the impedance operator for general periodic problems and present an exact ABC in a form of Dirichlet-to-
Neumann mapping. In Section 3 we use this result to compute bound states for the Schrödinger operator.
Finally, in Section 4 we show how the results can be generalized to the time-dependent Schrödinger equation,
a diffusion equation and a second-order hyperbolic equation and present a concise numerical example.

2. A conjecture on the impedance expression

Let us start with the following general second-order ODE
� d

dx
1

mðxÞ
dy
dx

� �
þ V ðxÞy ¼ qðxÞzy; 8x P 0; ð2Þ
where z denotes a complex parameter whose value space is to be determined. We assume that the functions
mðxÞ, V ðxÞ and qðxÞ are all S-periodic in ½0;þ1Þ and centrally symmetric in each period, i.e.,
mðxÞ ¼ mðS � xÞ; V ðxÞ ¼ V ðS � xÞ; qðxÞ ¼ qðS � xÞ; a:e: x 2 ½0; S�: ð3Þ
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The symmetry condition (3) simply implies that the even extensions of these functions to the whole real axis are
still S-periodic. Moreover, we assume that the functions mðxÞ, V ðxÞ and qðxÞ are sufficiently smooth and
bounded, i.e. there exist several constants M0, M1, V 0 and q0, such that
0 < M0 6 mðxÞ 6 M1 < þ1; V ðxÞP V 0; qðxÞP q0 > 0; 8x 2 ½0; S�:

By introducing the new variable
w ¼ 1

mðxÞ
dy
dx
;

the second-order ODE (2) is transformed into a first-order ODE system
d

dx

w

y

� �
¼

0 V ðxÞ � qðxÞz
mðxÞ 0

� �
w

y

� �
; 8x P 0: ð4Þ
This paper is concerned with the L2-solution of (2) in ½0;þ1Þ. More precisely, we would like to know for what
z the ODE (2) possess an L2-solution yðxÞ, and in this case what is the impedance I :¼ y 0ð0Þ=yð0Þ, namely the
quotient of Neumann data over Dirichlet data evaluated at x ¼ 0.

For any two points x1 and x2, the ODE system (4) uniquely determines a linear transformation from the
two-dimensional vector space associated with x1, to the same space associated with x2. We identify this trans-
formation with the 2 � 2 matrix T ðx1; x2Þ, which satisfies the same form of equation as (4), namely:
d

dx
T ðx1; xÞ ¼

0 V ðxÞ � qðxÞz
mðxÞ 0

� �
T ðx1; xÞ; 8x1 P 0; 8x P 0: ð5Þ
This transformation matrix T satisfies the following properties:
T ðx; xÞ ¼ I2�2; det T ðx1; x2Þ ¼ det T ðx1; x1Þ ¼ 1; ð6aÞ
T ðx2; x3ÞT ðx1; x2Þ ¼ T ðx1; x3Þ; ð6bÞ
T ðx1 þ S; x2 þ SÞ ¼ T ðx1; x2Þ: ð6cÞ
According to (6a), the matrix T ð0; SÞ has two eigenvalues rð6¼ 0Þ and 1=r with jrj 6 1. Their associated eigen-
vectors are denoted by ðcþ; dþÞ> and ðc�; d�Þ>. If jrj < 1, then T ð0; xÞðc�; d�Þ> yields two linearly independent
solutions of the ODE system (4). By setting r ¼ elS with Rel < 0 it is straightforward to verify that
e�lxT ð0; xÞðc�; d�Þ> are periodic functions. Therefore, we conclude that
yþ :¼ T ð0; xÞðcþ; dþÞ> ¼ elxe�lxT ð0; xÞðcþ; dþÞ>
is L2-bounded, while
y� :¼ T ð0; xÞðc�; d�Þ> ¼ e�lxelxT ð0; xÞðc�; d�Þ>
is not. For the L2-bounded solution yþ, the impedance I is thus given as
I :¼ y0þð0Þ
yþð0Þ

¼ mð0Þ cþ
dþ
: ð7Þ
We remark that r and ðcþ; dþÞ> depend on z, and hence the impedance I also depends on z. In the sequel we
will refer to r as the Floquet’s factor [3,14,19]. It typically reflects how fast the L2-bounded solution of the ODE
(2) decays to zero when x tends to þ1: the smaller its modulus, the faster. Also note that rð�zÞ ¼ rðzÞ and
Ið�zÞ ¼ IðzÞ holds. The impedance (7) is computed after T ð0; SÞ is obtained (cf. the impedance plots in Figs.
5 and 6 for some values of z).

In general, the matrix T ð0; SÞ cannot be represented with a simple analytical expression in terms of the func-
tions mðxÞ, V ðxÞ and qðxÞ. However, it can be computed sufficiently accurately by integrating the ODE (5) (set-
ting x1 ¼ 0) in the interval ½0; S� with the initial data T ð0; 0Þ ¼ I2�2. Since this task is a standard issue, the
detailed discussion is omitted here.
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We consider in the sequel three cases:
Case A : mðxÞ ¼ qðxÞ ¼ 1; V ðxÞ ¼ 2 cosð2xÞ;
Case B : mðxÞ ¼ qðxÞ ¼ 1þ cosð2xÞ=5; V ðxÞ ¼ cosð2xÞ;
Case C : mðxÞ ¼ qðxÞ ¼ 1þ cosð2xÞ=5; V ðxÞ ¼ sinð2xÞ:
Figs. 1–3 show the modulus of r, which denotes the eigenvalue of T ð0; SÞ with a smaller modulus. We observe
that apart from some intervals in the real axis, for any z in the complex plane, r has a modulus less than 1, thus
the second-order ODE (2) has a nontrivial L2-solution. Furthermore, it turns out that the ending points of
these intervals are exactly the eigenvalues of the following characteristic problem:

Find k 2 R and a nontrivial y 2 C1
per½0; 2S�, such that
� d

dx
1

mðxÞ
dy
dx

� �
þ V ðxÞy ¼ qðxÞky: ð8Þ
We note that the symmetry condition (3) is not necessary for the above statements (in fact Case C does not
satisfy (3)). We admit that the above statements have not been proven up to this time, but a vast number of
other numerical evidences also support their validity.

If the coefficient functions mðxÞ, V ðxÞ and qðxÞ satisfy the symmetry condition (3), then the characteristic
problem (8) has a nice property: all the eigenvalues can be classified into two different groups
a1 < a2 < a3 < . . . and b1 < b2 < b3 < . . . ;
where the eigenvalues ar are associated with even eigenfunctions, and br with odd eigenfunctions. Besides, it
holds that
a1 < minða2; b1Þ � maxða2; b1Þ < minða3; b2Þ 6 maxða3; b2Þ < . . .
For the Schrödinger equation (SE) with a periodic cosine potential, a special case of (2) with mðxÞ ¼ qðxÞ ¼ 1
and V ðxÞ ¼ 2q cosð2xÞ, the second author [29] made a conjecture upon the impedance expression
Fig. 1. Case A: Modulus of r with respect to z.



Fig. 3. Case C: Modulus of r with respect to z.

Fig. 2. Case B: Modulus of r with respect to z.
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ISEðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zþ a1

þ
p Yþ1

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�zþ arþ1
þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zþ br

þ
p ; Im z > 0;
where
ffiffi�þp denotes the branch of the square root with positive real part.
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The branch cut is set as the negative real axis. Intensive numerical tests in [29] verified the validity of this
formula. Since formally ISEð�zÞ ¼ ISEðzÞ for any z with Im z 6¼ 0, it is thus tempting to generalize the above con-
jecture to our general second-order ODE (2), i.e.,
IðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð0Þqð0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zþ a1

þ
p Qþ1

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffi�zþarþ1
þp ffiffiffiffiffiffiffiffiffi
�zþbr
þp ; Im z 6¼ 0: ð9Þ
Remark 2. For a better understanding of the impedance condition (9) let us discuss how to obtain the
constant coefficient case from the more general formula (9). The impedance for constant coefficients is given by
IðzÞ ¼ � ffiffiffiffiffiffiffi
mq
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zþ V

q
þ

s
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðV � qzÞþ

p
:

All the eigenvalues of (8) are
kn ¼
np
S

� �2 þ mV

mq
:

The eigenspace of k0 is the set of constant functions. For n > 0, the eigenvalue kn is degenerate. Its eigenspace
is two-dimensional, spanned by cosðpx=SÞ and sinðpx=SÞ. Notice that cos is even and sin is odd.

Thus we have
an ¼ kn�1; n P 1 and bn ¼ kn; n P 1:
Since arþ1 ¼ br for any r P 1, Eq. (9) yields
I ¼ � ffiffiffiffiffiffiffi
mq
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�zþ a1
þ
p

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðV � qzÞþ

p
;

the correct impedance expression.

Let us consider another two numerical tests:
Case D : mðxÞ ¼ qðxÞ ¼ 1; V ðxÞ ¼
Xþ1

n¼�1
e�16ðx�p=2�npÞ2 ;

Case E : mðxÞ ¼ 1; V ðxÞ ¼ 0; qðxÞ ¼ 1þ cosð2xÞ=5:
Case D corresponds to the Schrödinger equation with a periodic Gaussian potential, cf. Fig. 4, and Case E
could arise from a second-order hyperbolic wave equation in a periodic medium.

Figs. 5 and 6 show the impedance function IðzÞ when z is very close to the real axis. It can be clearly seen
that the impedance turns out to be either real or purely imaginary. Those real intervals with purely imaginary
impedance are exactly those values of z for which the ODE (2) has no nontrivial L2-solution. In the engineering
literature these intervals are called pass bands, while their complementary intervals are called stop bands. Sev-
eral remarks have to be made at this point.

Remark 3. The impedance IðzÞ becomes much more complicated as z approaches the real axis if one of the
coefficient functions mðxÞ, V ðxÞ and qðxÞ is not centrally symmetric, cf. (3).

Remark 4. The eigenvalues ar and br can be computed with a high-accuracy solver for the characteristic prob-
lem (8). The first few eigenvalues are listed in Tables 1 and 2 with 6 digits. We observe that the relative dif-
ference between arþ1 and br decays very fast when r increases.

Remark 5. If the coefficient functions mðxÞ and qðxÞ are constant and V ðxÞ ¼ 2q cosð2xÞ with q > 0, then the
general ODE (2) is reduced to the well-known Mathieu’s equation [3,19]. In this case, we obtain
a1 < b1 < a2 < b2 < a3 < b3 < . . . :
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However, in general this property does not hold, and we can only expect the following
5. Case
a1 < minða2; b1Þ � maxða2; b1Þ < minða3; b2Þ � maxða3; b2Þ < . . . :
Remark 6. The stop bands are characterized as
ð�1; a1Þ; ðminða2; b1Þ;maxða2; b1ÞÞ; ðminða3; b2Þ;maxða3; b2ÞÞ; . . .
D: Impedance
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and the pass bands are given by
Table
Case D

r

0
1
2
3
4

Table
Case E

r

1
2
3
4

Notice
ða1;minða2; b1ÞÞ; ðmaxða2; b1Þ;minða3; b2ÞÞ; ðmaxða3; b2Þ;minða4; b3ÞÞ; . . .
Now let us consider the expression (9) with the infinite product limited to R factors:
IRðzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð0Þqð0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zþ a1

þ
p YR

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�zþ arþ1
þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zþ br

þ
p ; Im z 6¼ 0: ð10Þ
Figs. 7 and 8 show the maximum errors between the impedance IðzÞ and IRðzÞ on 4001 equidistant points on
three segments of the upper half complex plane. We detect that these errors become very small with increasing
1
: The first several eigenvalues of (8) with mðxÞ ¼ qðxÞ ¼ 1 and V ðxÞ ¼

Pþ1
n¼�1e�16ðx�p=2�npÞ2

arþ1 br r arþ1 br r arþ1 br

1.30811(�1) 5 2.51111(1) 2.51730(1) 10 1.00142(2) 1.00141(2)
1.00842(0) 1.26431(0) 6 3.61574(1) 3.61260(1) 11 1.21141(2) 1.21141(2)
4.25428(0) 4.03081(0) 7 4.91344(1) 4.91486(1) 12 1.44141(2) 1.44141(2)
9.06010(0) 9.22586(0) 8 6.41442(1) 6.41386(1) 13 1.69141(2) 1.69141(2)
1.61965(1) 1.60886(1) 9 8.11403(1) 8.11423(1) 14 1.96141(2) 1.96141(2)

2
: The first few eigenvalues of (8), where mðxÞ ¼ 1, V ðxÞ ¼ 0 and qðxÞ ¼ 1þ cosð2xÞ=5

arþ1 br r arþ1 br r arþ1 br

9.08164(�1) 1.10938 5 2.51315(1) 2.51328(1) 9 8.14157(1) 8.14157(1)
4.06748 3.98676 6 3.61880(1) 3.61877(1) 10 1.00512(2) 1.00512(2)
9.04010 9.06316 7 4.92536(1) 4.92537(1) 11 1.21618(2) 1.21618(2)
1.60896(1) 1.60838(1) 8 6.43296(1) 6.43296(1) 12 1.44735(2) 1.44735(2)

that a1 ¼ 0.
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R. This observation has also been made for many other numerical tests. It is thus reasonable to conjecture that
the limit of IRðzÞ as R tends to þ1 is the impedance IðzÞ, i.e. the formula (9) states the correct impedance
expression.
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Let us note that we are trying to prove conjecture presented above, namely if the potential is centrally sym-
metric, then (9) gives the analytical expression of the impedance operator. The proofs will rely on the theory
on so-called boundary triplets and the analysis of the associated (Titchmarsh-) Weyl functions and it will be a
generalization of the two recent works [5,6].

If z ¼ z0 is a real number, then the impedance expression (9) might not be well-defined. If z0 lies in one of the
stop bands, we already know that
Table
The fir

r

0
1
2

lim
�!0þ

Im Iðz0 þ �Þ ¼ 0:
Due to the symmetry property of the impedance, i.e. Ið�zÞ ¼ IðzÞ, we can define
Iðz0Þ ¼ lim
�!0þ

Iðz0 � �Þ:
Hence the impedance expression (9) still can be considered valid. If z0 lies in one of the pass bands, the ODE
(2) has no nontrivial bounded L2-solution. In this case, we have to specify what kind of solution is really what
we are seeking for. The impedance of this solution is thus the one-sided limit of Iðz0 þ �Þ as either �! 0þ or
�! 0�. In most cases, this choice can be made naturally under physical considerations.

3. Bound states for the Schrödinger operator

As a first application of the impedance expression (9), we consider the following bound state problem for the

Schrödinger operator:
Find an energy E 2 R and a nontrivial real function u 2 L2ðRÞ, such that
� d2u
dx2
þ V ðxÞu ¼ Eu; x 2 R; ð11Þ
where
V ðxÞ ¼
2þ 2 cosðpxÞ; jxj > 1;

0; jxj < 1:

�

The potential function V ðxÞ is periodic in R n ð�1; 1Þ. In order to ensure that the solution u has a bounded
L2-norm, the energy E must be valued in the stop bands. The first few eigenvalues of the characteristic problem
(8) with mðxÞ ¼ qðxÞ ¼ 1 and V ðxÞ ¼ 2� 2 cosðpxÞ (NOT V ðxÞ ¼ 2þ 2 cosðpxÞ) are listed in Table 3.

The first three stop bands are given by
ð�1; 1:80087Þ; ð3:41926; 5:41414Þ; ð11:8359; 12:0349Þ:

If E is a bound state energy, then it must be an eigenvalue of the following nonlinear characteristic problem:
Find an energy E 2 R and a nontrivial real function u 2 L2ð�1; 1Þ, such that
� d2u
dx2
þ V ðxÞu ¼ Eu; x 2 ð�1; 1Þ; ð12aÞ

� du
dx
ð�1Þ ¼ IðEÞuð�1Þ; ð12bÞ

du
dx
ð1Þ ¼ IðEÞuð1Þ: ð12cÞ
3
st few eigenvalues of (8) with mðxÞ ¼ qðxÞ ¼ 1 and V ¼ 2� 2 cosðpxÞ

arþ1 br r arþ1 br

1.80087 3 2.42294(1) 2.42345(1)
3.41926 5.41414 4 4.14920(1) 4.14919(1)
1.20349(1) 1.18359(1) 5 6.36935(1) 6.36935(1)
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A direct discretization of the above problem (12) leads to a very complicated nonlinear algebraic equation
with respect to E, and its solvability is not completely clear. Actually, the problem (12) is equivalent to the
following fixed point problem. For a given energy E we can solve the linear characteristic problem:

Find a function UðEÞ 2 R and a nontrivial real function u 2 L2ð�1; 1Þ, such that
� uxx þ V ðxÞu ¼ UðEÞu; x 2 ð�1; 1Þ; ð13aÞ

� du
dx
ð�1Þ ¼ IðEÞuð�1Þ; ð13bÞ

du
dx
ð1Þ ¼ IðEÞuð1Þ: ð13cÞ
The bound state energy thus satisfies E ¼ UðEÞ, i.e. E is a fixed point of the function UðEÞ. Notice that UðEÞ is
a multi-valued function and hence a series of bound states are expected.

Fig. 9 shows the first three branches of UðEÞ being restricted to ½�8; 15�. The time-harmonic Schrödinger
equation is discretized by 50 eighth-order finite elements in ½�1; 1�. IðEÞ is approximated by I14ðEÞ, which is
equal to IðEÞ within machine precision if jEj < 20. Three bound states exist in this energy range. By perform-
ing the Newton–Steffenson iterations, the energies are found to be E0 ¼ 0:642647, E1 ¼ 4:88651 and
E2 ¼ 12:0164. Our computations show that these values do not change within 6 digits by refining the finite
element mesh.

The bound state wave functions (not normalized) are plotted in Fig. 10. We observe in Fig. 10 that the
ground state is well-localized, while the second excited bound state is greatly delocalized. This demonstrates
the advantage of the artificial boundary method and especially our ABCs (13b) and (13c), since a direct
domain truncation method necessitates a very large computational domain to ensure the approximating accu-
racy of the wave function.
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In Eqs. (14)–(16) the variable s with Re s > 0 denotes the free argument in the Laplace domain. Notice that
due to our assumption, all coefficients ar and br in (15) and (16) are nonnegative and thus the formulas
(15) and (16) are well-defined. The numerical solution to the Schrödinger equation in conjunction with the
ABC (14) has been investigated in [29]. Similar techniques can be used for the diffusion equation with the
ABC (15) with minor modifications. In the sequel we will focus on a second-order hyperbolic equation in a
two-dimensional setting.

To do so, we consider the propagation of electromagnetic waves in a waveguide with cavity, cf. the sche-
matic map Fig. 11. For a TM polarized electromagnetic wave, the electric field E is governed by the equation
o2E
ox2
þ o2E

oz2
� �ðx; zÞ

c2

o2E
ot2
¼ 0: ð17Þ
The relative dielectric permittivity �, depending only on x after the artificial boundary, is supposed to be peri-
odic. We assume that this waveguide is enclosed with a perfect conductor and hence we have a homogeneous
Dirichlet boundary condition E ¼ 0 on the physical boundary.

On the semi-infinite slab region ½0;þ1Þ � ½0; 1�, the characteristic decomposition can be applied with
respect to the z variable. The eigenvalues are given by n2p2 and the eigenfunctions are sinðnpzÞ, n P 1. An
exact ABC in the frequency domain is thus set up as
bEn
xð0; sÞ ¼ �

ffiffiffiffiffiffiffiffiffi
�ð0Þ

p
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ an

1
þ
q Y1

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ an

rþ1
þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ bn
r

þ
p bEnð0; sÞ; n P 1: ð18Þ
Here, bEnðx; sÞ denotes the nth mode of bEðx; z; sÞ in the z-direction defined as
bEnðx; sÞ ¼ 2

Z 1

0

bEðx; z; sÞ sinðnpzÞdz; x P 0; n P 1:
bEðx; z; sÞ is determined by bEnðx; sÞ as
bEðx; z; sÞ ¼Xþ1
n¼1

bEnðx; sÞ sinðnpzÞ; x P 0:
The constants an
r and bn

r in (18) are the eigenvalues of the characteristic problem (8) with the coefficients
mðxÞ ¼ 1, V ðxÞ ¼ n2p2 and qðxÞ ¼ �ðxÞ=c2. By setting
ŵn
kðsÞ ¼

Y1
r¼k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ an

rþ1
þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ bn
r

þ
p bEnð0; sÞ; k P 1; n P 1;
we obtain the recursion relation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ bn

k
þ
q

ŵn
kðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ an

kþ1
þ
q

ŵn
kþ1ðsÞ; k P 1; n P 1;
Cavity

Wave In Periodic Media 

Artificial Boundary 

Fig. 11. Schematic map of a waveguide with cavity.
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and (18) reads
bEn
xð0; sÞ ¼ �

ffiffiffiffiffiffiffiffiffi
�ð0Þ

p
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ an

1
þ
q

ŵn
1ðsÞ; n P 1: ð19Þ
Now going back to the physical domain yields
dwn
k

dt
¼ dwn

kþ1

dt
þ

ffiffiffiffiffiffiffiffiffi
an

kþ1

p
J 1ð

ffiffiffiffiffiffiffiffiffi
an

kþ1

p
tÞ

t
	 wn

kþ1 �
ffiffiffiffiffi
bn

k

p
J 1ð

ffiffiffiffiffi
bn

k

p
tÞ

t
	 wn

k ; k P 1; n P 0;
and from (19) we get
oEn

ox
ð0; tÞ ¼ �

ffiffiffiffiffiffiffiffiffi
�ð0Þ

p
c

dwn
1

dt
þ

ffiffiffiffiffi
an

1

p
J 1ð

ffiffiffiffiffi
an

1

p
tÞ

t
	 wn

1

� �
¼ �

ffiffiffiffiffiffiffiffiffi
�ð0Þ

p
c

oEn

ot
ð0; tÞ þ

Xþ1
k¼0

ffiffiffiffiffiffiffiffiffi
an

kþ1

p
J 1ð

ffiffiffiffiffiffiffiffiffi
an

kþ1

p
tÞ

t
	 wn

kþ1

 
�
Xþ1
k¼1

ffiffiffiffiffi
bn

k

p
J 1ð

ffiffiffiffiffi
bn

k

p
tÞ

t
	 wn

k

!
: ð20Þ
Here, 	 denotes a convolution with respect to the time variable t and J 1 is the Bessel function of first order. In
a real implementation the infinite summation terms in (20) have to be truncated. By simply keeping the first Kn

terms we obtain
oEn

ox
ð0; tÞ ¼ �

ffiffiffiffiffiffiffiffiffi
�ð0Þ

p
c

oEn

ot
ð0; tÞ þ

XKn

k¼0

ffiffiffiffiffiffiffiffiffi
an

kþ1

p
J 1ð

ffiffiffiffiffiffiffiffiffi
an

kþ1

p
tÞ

t
	 wn

kþ1

 
�
XKn

k¼1

ffiffiffiffiffi
bn

k

p
J 1ð

ffiffiffiffiffi
bn

k

p
tÞ

t
	 wn

k

!
; ð21Þ
and
wn
Knþ1ðtÞ ¼ Enð0; tÞ:
If we want to resolve the nth mode in the z-direction, we typically set Kn P 0. In order to ensure the approx-
imating accuracy of the ABC, Kn should be increased for larger values of n. Of course, if we are not interested
in the nth mode at all, we only need to set Kn ¼ �1. In the following numerical example, we simply set Kn ¼ 10
for any n ¼ 0; 1; . . . ;N , and Kn ¼ �1 for any n ¼ N þ 1; . . ., where N denotes the number of modes in the z-
direction we want to resolve.

Numerical Example. We now study the wave field generated by a periodic disturbance at the left physical
boundary
Eð�2; z; tÞ ¼ sinðpzÞ
Xþ1
n¼0

e�160ðt�ðnþ0:5ÞÞ2 ; z 2 ð0; 1Þ:
The wave speed is set to 1, and the dielectric permittivity � is set to be
�ðx; zÞ ¼
1; x < 0;

1:2� 0:2 cosð2pxÞ; x > 0:

�

We limit our computational time interval to ½0; 6�. Due to the finite wave propagation speed (at most 1), we
can compute a reference solution Eref in a large domain ð�2; 4Þ � ð0; 1Þ [ ð�1; 0Þ � ð1; 2Þ with small mesh sizes
Dx ¼ Dz ¼ 0:00125 and Dt ¼ 0:000625. The leap-frog central difference scheme is employed in all the compu-
tations. We use the standard fast evaluation technique proposed by Alpert et al. [1,28] for the convolution oper-
ations involved in the ABC (21). The poles and weights are taken from the webpage of Hagstrom. The relative
L2-error is defined as
kErefð�; �; tÞ � Enumð�; �; tÞkL2

kErefð�; �; 6ÞkL2

;

where Eref stands for the reference solution, while Enum denotes the numerical solution.

In Figs. 12 and 13 we compare the numerical solutions with the reference solutions at two different time
steps. No difference can be observed with eyes.
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In Fig. 14 we depict the errors when different number of modes in the z-direction are used. The accuracy of
the numerical solutions is greatly improved for large number of modes.

The error evolution with respect to the time t is shown in Fig. 15. At the initial stage, the wave does not
reach the artificial boundary, thus the ABC has no influence on the numerical solutions. The error arises
completely from the interior discretization. After a critical time point (almost t ¼ 2:5), the artificial boundary
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Fig. 12. At time t ¼ 3. The number of modes is 10. The contour lines are �1 : 2=21 : 1. Dx ¼ Dz ¼ 0:005. Dt ¼ 0:0025. The reference
solution is obtained by taking Dx ¼ Dz ¼ 0:00125 and Dt ¼ 0:000625.
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Fig. 13. At time t ¼ 6. The number of modes is 10. The contour lines are �1 : 2=21 : 1. Dx ¼ Dz ¼ 0:005. Dt ¼ 0:0025. The reference
solution is obtained by taking Dx ¼ Dz ¼ 0:00125 and Dt ¼ 0:000625.
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condition comes into effect. We see that if enough number of modes are used, the error from the approximate
boundary condition is nearly on the same level of interior discretization, which means the ABC is sufficiently
accurate in this parameter regime. Finally, we analyzed numerically in Fig. 16 the convergence rate of the
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relative L2-errors at t ¼ 6. Data-fitting reveals that the errors decay with an order of 1.851 in the parameter
range Dt 2 ½0:02

7
; 0:01�, when the number of modes in the z-direction is set to 10.

5. Conclusions

In this paper we have generalized a recent result of Zheng [29] and derived an exact Dirichlet-to-Neumann
artificial boundary condition for general problems with periodic structures at infinity. We considered in detail
the bound state problem for the Schrödinger operator and a second-order hyperbolic equation in two space
dimensions. Intensive numerical tests have strongly supported the validity of this new kernel expression for the
artificial boundary condition, though at this stage we did not prove it theoretically, but the proof of this con-
jecture is currently under study.

It is tempting to generalize the result of this paper to the derivation of fully discrete artificial boundary con-
ditions [7] for periodic potential problems. These boundary conditions are directly derived for the numerical
scheme. Another very challenging task would be the extension of the present work to multi-dimensional prob-
lems with periodic structures.
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